
Homogeneous Linear Differential Equation
of the second order
The use of a known solution to find another
(Reduction order)
Homogeneous Differential Equation with
constant coefficient

Cauchy-Euler equation
Methods for solving non homogeneous lin-
ear differential equations

Method of Undetermined Coefficients
Method of variation of parameters

System of Differential equation
Homogeneous Linear System
Non-homogeneous Linear System

Operator method for Linear System with
constant coefficients
Applications of Second-Order Differential
Equations

Spring/Mass System
Electric Circuit

2 — Ordinary Linear Differential Equation of the second order

2.1 Homogeneous Linear Differential Equation of the second order
A second-order linear differential equation has the form

y��+P(x)y�+Q(x)y = R(x) (2.1)

where P , Q and R are continuous functions of x.
If R(x) = 0, for all x, then (2.1) reduces

y��+P(x)y�+Q(x)y = 0 (2.2)

and is called homogeneous. If R(x) �= 0, , then (2.1) is called non-homogeneous.
Let yg(x,c1,c2) is the general solution of (2.2). Let yp is a fixed particular solution of (2.1).
If y is any other solution of (2.1) then we can show that y− yp is a solution of (2.2)

(y− yp)
��+P(x)(y− yp)

�+Q(x)(y− yp) = y��p − y��+P(x)y�p −P(x)y�+Q(x)yp −Q(x)y

= y��p +P(x)y�p +Q(x)yp − (y��+P(x)y�+Q(x)y) = R−R = 0

There fore, y− yp is a solution of y��+Py�+Qy = 0.
Since yg(x,c1,c2) is the general solution of (2.2),

=⇒ y− yp = yg(x,c1,c2) =⇒ y = yp + yg(x,c1,c2)

Theorem 2.1.1 — (Principle of supper position) If y1(x) and y2(x) are any solution of (2.2)
then c1y1(x)+ c2y2(x) is also a solution of (2.2) for any constant c1 & c2

Proof. Since y1 and y2 are solution of (2.2) we have

y��1 +Py�1 +Qy1 = 0 and y��2 +Py�2 +Qy2 = 0

Let y = c1y1 + c2y2. We want to show y is solution of (2.2).

(c1y1 + c2y2)
��+P(c1y1 + c2y2)

�+Q(c1y1 + c2y2) = c1y��1 + c2y��2 +Pc1y�1 +Pc2y�2 +Qc1y1 +Qc2y2

⇒ c1(y��1 +Py�1 +Qy1)+ c2(y��2 +Py�2 +Qy2)

⇒ c1.0+ c2.0 = 0

Therefore, c1y1 + c2y2 is also a solution of (2.2) �
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R Super position principle in general does’t hold for non-homogeneous and non-linear.

� Example 2.1 1. y1 = 1+cosx and y2 = 1+ sinx are solutions of the non-homogeneous
differential equation y��+ y = 1 but their linear combination y1 + y2 = 2+ cosx+ sinx
is not the solution.

2. y1 = x2 and y2 = 1 are the solutions of the non-linear DE yy�� − xy� = 0 but their linear
combination y1 + y2 = x2 +1 is not the solution.

�

Linear independence and Wronskian
Definition 2.1.1 If y1, y2, . . .yn are functions in an interval I and if each function possesses
(n-1) derivatives on this interval then the Wronskian of the n function is

W (x) =W (y1, y2, . . .yn) =

�����������

y1(x) y2(x) . . . yn(x)
y�1(x) y�2(x) . . . y�n(x)
y��1(x) y��2(x) . . . y��n(x)

...
...

...
y(n−1)

1 (x) y(n−1)
2 (x) . . . y(n−1)

n (x)

�����������

In particular, for two differentiable functions y1(x) and y2(x) the Wronskian is defined as

W (x) =W (y1, y2) =

����
y1(x) y2(x)
y�1(x) y�2(x)

����= y1(x)y�2(x)− y�1(x)y2(x) (2.3)

Definition 2.1.2 A collection of function {yi(x)}n
i=1 is linearly independent on (a, b) if

n
∑

i=1
ciyi = 0, ∀x ∈ (a, b) then ci = 0, (i = 0, 1, . . .n) otherewise {yi(x)}n

i=1 is called linearly

dependent.

If W (y1, y2) �= 0 then the function y1(x) and y2(x) are linearly independent and if W (y1, y2) = 0
then they are linearly dependent.

Definition 2.1.3 A set of a linearly independent solutions is called fundamental set

Theorem 2.1.2 Let y1(x) and y2(x) are linearly independent solution of the homogeneous
equation

y��+P(x)y�+Q(x)y = 0 (2.4)

on the interval [a, b] then c1y1 + c2y2 is the general solution of (2.4).

Corollary 2.1.3 If y1 and y2 are any two solution of (2.4) on (a, b) then their Wronskian
W =W (y1, y2) is either identically zero or never zero on [a, b]

Corollary 2.1.4 If y1 and y2 are any two solution of (2.4) on (a, b) then they are linearly
dependent on this interval if and only if their Wronskian W = W (y1, y2) = y1y2 − y2y�1 is
identically zero.
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2.2 The use of a known solution to find another (Reduction order) 29

� Example 2.2 Show that y = c1 sinx+ c2 cosx is the general solution of y��+ y = 0 on any
interval. Find the particular solution for which y(0) = 2 & y�(0) = 3 �

2.2 The use of a known solution to find another (Reduction order)
Let y��+P(x)y�+Q(x)y = 0 If y1 and y2 are linearly idependent solution of (2.4), then the general
solution is y = c1y1 + c2y2. If y1 is a solution then cy1 is also a solution of (2.4). Replace c by a
variable v and let y2 = vy1.
Assume that y2 is also a solution of (2.4)

y��2 +Py�2 +Qy2 = 0
To find v,

y�2 = vy�1 + v�y1 and y��2 = vy��1 +2v�y�1 + v��y1

y��2 +Py�2 +Qy2 = vy��1 +2v�y�1 + v��y1 +P(vy�1 + v�y1)+Q(vy1)

= v(y��1 +Py�1 +Qy1)+ v�(2y�1 + py1)+ v��y1

= v��y1 + v�(2y�1 + py1) = 0

=⇒ v��y1 + v�(2y�1 + py1) = 0 =⇒ v��

v�
=

−2y�1
y1

−P

Integrating

lnv� = −2lny1 −
�

P(x)dx ⇒ v� =
1
y2

1
e−

�
P(x)dx

∴ v =
� 1

y2
1

e−
�

P(x)dxdx

⇒ y2 = vy1 = y1

� 1
y2

1
e−

�
P(x)dxdx

� Example 2.3 Let y1 = x is a solution of x2y��+ xy� − y = 0. Find the general solution. �

Solution: x2y��+ xy� − y = 0 ⇒ y��+
1
x

y�� − 1
x2 y = 0, p(x) =

1
x
, y2 = vy1

v =
� 1

y2
1

e−
�

P(x)dxdx =
� 1

x2 e−
� 1

x dxdx =
� 1

x2 e− lnxdx =
� 1

x3 dx =− 1
2x2

∴ y2 = vy1 =− 1
2x2 .x =− 1

2x

The general solution is y = c1x+ c2x−1

Exercise 2.1 Find the general solution of
(a) y��+ y = 0, y1 = sinx (b) y�� − y = 0, y1 = ex

(c) xy��+3y� = 0, y1 = 1 (d) (1− x2)y�� −2xy�+2y = 0, y1 = x �

Answer:

a y = c1 sinx+ c2 cosx
b y = c1ex + c2e−x

c y = c1 + c2x−2

d y = c1x+ c2

�
x
2

ln
�

1+ x
1− x

�
−1

�
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30 Ordinary Linear Differential Equation of the second order

2.3 Homogeneous Differential Equation with constant coefficient

The special case of y��+ p(x)y�+q(x)y = 0 for which p(x) and q(x) are constants

y��+ py�+qy = 0 (2.5)

Let y = emx be possible solution of (2.5)
y� = memx, y�� = m2emx

m2emx + pmemx +qemx = 0 ⇒ (m2 + pm+q)emx = 0

⇒ m2 + pm+q = 0 → This equation is called auxilary/characterstics equation

The two roots m1 and m2

m1 =
−p+

�
p2 −4q

2
, m2 =

−p−
�

p2 −4q
2

Case 1: Distinct two real roots (p2 −4q > 0).
We have two solutions em1x and em2x. (Let m1 and m2 solution for characterstics equation)

em1x

em2 x = e(m1−m2)x is not constant ⇒ em1x and em2x are linearly independent.

The general solution is y = c1em1x + c2em2x

Case 2: If p2 −4q = 0 (One solution)

y = emx is a solution where m =
−p
2

Let y1 = e−
p
2 x, then y2 = vy1

⇒ y2 = y1

� 1
y2

1
e−

�
pdxdx = e−

p
2 x
� 1

y2
1

e−pxdx = e−
p
2 x
� 1

e−px e−pxdx = xe−
p
2 x

The general solution is y = c1y1 + c2y2 ⇒ y = c1e−
p
2 x + c2xe−

p
2 x

Case 3: If p2 −4q < 0. In this case m1 and m2 can be written as a± ib

em1x = e(a+ib)x = eax (cosbx+ isinbx) , em2x = e(a−ib)x = eax (cosbx− isinbx)

⇒ em1x + em2x = 2eax cosbx, em1x − em2x = 2ieax sinbx

∴ y = eax (c1 cosbx+ c2 sinbx)

� Example 2.4 Solve the following

(a)
d2y
dx2 −3

dy
dx

−4y= 0 (b) 2y��−3y� = 0 (c)
d2y
dx2 +8

dy
dx

+16y= 0 (d)
d2y
dx2 +y= 0

�

Exercise 2.2 1. Find the general solution of

(a) y�� −5y� −14y = 0
(b) y��+3y�+3y = 0
(c) y��+10y�+25y = 0

(d) 4y�� −5y� = 0,y(−2) = 0,y�(−2) = 7
(e) y�� + 14y� + 49y = 0, y(−4) =

−1, y�(−4) = 5

�
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2.3 Homogeneous Differential Equation with constant coefficient 31

2.3.1 Cauchy-Euler equation

A linear differential equation of the form

ax2 d2y
dx2 +bx

dy
dx

+ cy = 0 (2.6)

where the coefficients a,b,c are constants, is known as a Cauchy-Euler equation.
Let y = xm be possible solution of (2.6)

ax2 d2y
dx2 +bx

dy
dx

+ cy = ax2m(m−1)xm−2 +bxmxm−1 + cxm = 0

=⇒ (am(m−1)+bm+ c)xm = 0

=⇒ am(m−1)+bm+ c = 0, xm �= 0

=⇒ am2 +(b−a)m+ c = 0 (2.7)

CASE I : DISTINCT REAL ROOTS: Let m1 and m2 denote the real roots of ((2.7)) such that
m1 �= m2. Then y1 = xm1 and y2 = xm2 form a fundamental set of solutions. Hence the
general solution is

y = c1xm1 + c2xm2

CASE II : REPEATED REAL ROOTS: If the roots of (2.7) are repeated (that is, m1 = m2 ), then
we obtain only one solution—namely, yxm1 . When the roots of the quadratic equation
am2 +(b−a)m+ c = 0 are equal, the discriminant of the coefficients is necessarily zero.

It follows from the quadratic formula that the root must be m1 =−b−a
2a

Now we can construct a second solution y2 , using reduction of order. We first write the
Cauchy-Euler equation in the standard form

d2y
dx2 +

b
ax

dy
dx

+
c

ax2 y = 0

Hence, P(x) =
b
ax

=⇒
� b

ax
=

b
a

lnx. Thus,

y2 = y1

� 1
y2

1
e−

�
P(x)dxdx = xm1

� 1
x2m1

e−
b
a lnxdx

= xm1

�
x−2m1x−

b
a dx = xm1

�
x

b−a
a x−

b
a dx

= xm1

� 1
x

dx = xm1 lnx

The general solution is then
y = c1xm1 + c2xm1 lnx

CASE II : CONJUGATE COMPLEX ROOTS: If the roots of (2.7) are the conjugate pair
m1 = α + iβ ,m2 = α − iβ ,

then the general solution is
y = xα [c1 cos(β lnx)+ c2 sin(β lnx)]

� Example 2.5 Solve
(a) x2y��+3xy�+10y = 0
(b) 2x2y��+10xy�+8y = 0
(c) x2y��+2xy� −12y = 0

�
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32 Ordinary Linear Differential Equation of the second order

2.4 Methods for solving non homogeneous linear differential equations

2.4.1 Method of Undetermined Coefficients
Consider

y��+ p(x)y�+q(x)y = R(x) (2.8)

if yg(x) ( the general solution of the associated homogenous equation) is know and yp is a
particular solution of (2.8) then

y = yg(x)+ yp(x)

is the general solution of (2.8).
Now let us see how to found yp with some special cases where

• the coefficients p and q are constants and
• R(x) is a constant k, a polynomial function, an exponential function eax , a sine or cosine

function sinbx or cosbx, or finite sums and products of these functions.
The procedure for finding yp is called the method of undetermined coefficients.

• If R(x) = eax then take yp = Aeax, where A is the undetermined coefficients and a is not
roots of the auxiliary equation m2 + pm+q = 0.

Hence, A =
1

a2 + pa+q
, a2 + pa+q �= 0

– If a is a single roots of the auxiliary equation m2 + pm+q = 0, then take yp = Axeax.

Thus A =
1

2a+ p
, 2a+ p �= 0

– If a is a double roots of the auxiliary equation m2+ pm+q= 0, then take yp =Ax2eax.

Thus A =
1
2

• If R(x) = sinbx then take yp = Asinbx+Bcosbx,
The undetermined coefficients A and B can how be computed by substituting and equating
the resulting coefficients of sinbx and cosbx.

• If R(x) = a0 +a1x+a2
x + . . .+anxn, take yp = A0 +A1x+A1x2 + . . .+Anxn

R If any ypi contains terms that duplicate terms in yg , then that ypi must be multiplied by xn ,
where n is the smallest positive integer that eliminates that duplication.

� Example 2.6 Find the general solution of
a y��+3y� −10y = 6e4x

b y��+4y = 3sinx
c y�� −2y�+5y = 25x2 +12

�

Exercise 2.3 Find the general solution of
(a) y�� −4y�+4y = e2x

(b) y��+4y = 3cos2x
(c) y��+4y = sinx+ sin2x
(d) y��+ y = 4x+10sinx, y(π) = 0, y�(π) = 2
(e) y��+2y�+4y = 8x2 +12e−x

(f) y��+2y�+4y = 8x2 +12e−x +10sin3x
�
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2.4 Methods for solving non homogeneous linear differential equations 33

2.4.2 Method of variation of parameters
Techniques for determining a particular solution of the non homogeneous equation

y��+ py�+qy = R(x)

Let y = c1y1(x)+ c2y2(x) be the general solution of the corresponding homogeneous equations.
Now we replace c1 & c2 by a known function v1 & v2

y(x) = v1y1 + v2y2

y�(x) = v�1y1 + v1y�1 + v�2y2 + v2y�2
= (v�1y1 + v�2y2)+(v1y�1 + v2y�2)

Let v�1y1 + v�2y2 = 0

⇒ y� = v1y�1 + v2y�2
y�� = v�1y�1 + v1y��1 + v�2y�2 + v2y��2

= (v�1y�1 + v�2y�2)+ v1y��1 + v2y��2

Substituting y, y�, and y�� in the given equation we get

v1(y��1 + py�1 +qy1)+ v2(y��2 + py�2 +qy��2)+ v�1y�1 + v�2y�2 = R(x)

⇒
�

v�1y�1 + v�2y�2 = R(x)
v�1y1 + v�2y2 = 0

⇒
�

y1 y2
y�1 y�2

��
v�1
v�2

�
=

�
0

R(x)

�

⇒ v�1 =
−y2R(x)
W (y1,y2)

& v�2 =
y1R(x)

W (y1,y2)

⇒ v1 =
� −y2R(x)

W (y1,y2)
dx, v2 =

� y1R(x)
W (y1,y2)

dx

∴ yp = y1

� −y2R(x)
W (y1,y2)

dx+ y2

� y1R(x)
W (y1,y2)

dx

� Example 2.7 Find the particular solution of y��+ y = cscx �

Solution: The corresponding homogeneaous equation is

y��+ y = 0

⇒ yg = c1 sinx+ c2 cosx

⇒ y1 = sinx,y2 = cosx ⇒ W (y1,y2) = y1y�2 − y2y1 =−sin2 x− cos2 x =−1

v1 =
� −y2R(x)

W (y1,y2)
dx

=
� −cosxcscx

−1
dx =

� cosx
sinx

= ln(sinx)

v2 =
� y1R(x)

W (y1,y2)
dx

=
� sinxcscx

−1
dx =

�
−dx =−x

∴ yp = v1y1 + v2y2 = sinx ln(sinx)− xcosx
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� Example 2.8 Find the general solution of

y��+5y�+6y = e−x

�

Solution: The characteristics equation of the corresponding homogeneous DE is

m2 +5m+6 = 0

Then the solution of the corresponding homogeneous equation is
yg = c1e−3x + c2e−2x

Using variation of parameter with y1 = e−3x,y2 = e−2x and W =

����
e−3x e−2x

−3e−3x −2e−2x

���� = e−5x.

Thus, we get

yp =
1
2

e−x

The general solution is:

y = c1e−3x + c2e−2x +
1
2

e−x

� Example 2.9 Solve x2y�� −3xy�+3y = 2x4ex �

Solution: Since the equation is non-homogeneous, we first solve the associated homogeneous
equation. From the auxiliary equation (m−1)(m−3) = 0 we find yg = c1x+ c2x3.

The given differential equation can be written in the form

y�� − 3
x

y�+
3
x2 y = 2x2ex.

Using variation of parameter, with y1 = x,y2 = x3, and W (y1, y2) =

����
x x3

1 3x2

����= 2x3.

v1 =
� −y2R(x)

W (y1,y2)
dx =

� −x3(2x2ex)

2x3 dx

= −
�

x2exdx =−x2ex +2x6x −2ex

v2 =
� y1R(x)

W (y1,y2)
dx =

� x(2x2ex)

2x3

=
�

exdx = ex

∴ yp = v1y1 + v2y2 = (−x2ex +2x6x −2ex)(x)+(ex)(x3) = 2x2ex −2xex

The general solution is
y = yg + yp = c1x+ c2x3 +2x2ex −2xex

Exercise 2.4 Find the general solution of

(a) y�� −4y�+4y = e2x

(b) y��+4y = sec2x;y(0) = 1,y�(0) = 2
(c) y�� −2y�+ y = ex lnx,x > 0

(d) x2y�� − xy�+ y = 2x
(e) x2y�� −2xy�+2y = x4ex

(f) x2y��+ xy� − y = lnx

�
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2.5 System of Differential equation 35

2.5 System of Differential equation
Definition 2.5.1 A system of DE of the form

dx1

dt
= a11(t)x1(t)+a12(t)x2(t)+ . . .+a1n(t)xn(t)+ f1(t)

dx2

dt
= a21(t)x1(t)+a22(t)x2(t)+ . . .+a2n(t)xn(t)+ f2(t)

...
... (2.9)

dxn

dt
= an1(t)x1(t)+an2(t)x2(t)+ . . .+ann(t)xn(t)+ fn(t)

where the ai j(t)and fi(t) are specified functions on an interval I, is called a first-order linear
system. If f1 = f2 = . . .= fn = 0, then the system is called homogeneous. Otherwise, it is
called nonhomogeneous.

� Example 2.10 An example of a nonhomogeneous first-order linear system is

dx1

dt
= etx1 + t2x2 + sin t

dx1

dt
= tx1 +3x2 − cos t

The associated homogeneous system is

dx1

dt
= etx1 + t2x2

dx1

dt
= tx1 +3x2

�

Definition 2.5.2 By a solution to the system (2.9) on an interval I we mean an ordered n-tuple
of functions x1(t), x2(t), ..., xn(t), which, when substituted into the left-hand side of the
system, yield the right-hand side for all t in I.

Definition 2.5.3 Solving the system (2.9) subject to n auxiliary conditions imposed at the
same value of the independent variable is called an initial-value problem (IVP). Thus, the
general form of the auxiliary conditions for an IVP is:

x1(t0) = α1,x2(t0) = α2, ...,xn(t0) = αn,

where α1, α2, ..., αn are constants.

2.5.1 Homogeneous Linear System
consider the homogeneous linear system

dx
dt

= a11(t)x(t)+a12(t)y(t) (2.10)

dy
dt

= a21(t)x(t)+a22(t)x(t)
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36 Ordinary Linear Differential Equation of the second order

Theorem 2.5.1 If the homogeneous linear system (2.10) has two solution
�

x = x1(t)
y = y1(t)

and

�
x = x2(t)
y = y2(t)

(2.11)

on [a, b], then
�

x = c1x1(t)+ c2x2(t)
y = c1y1(t)+ c2y2(t)

(2.12)

is also a solution of (2.10) on [a, b] for arbitrary constants c1 and c2 and this solution (2.12)
is the general solution of (2.10) if

����
x1(t) x2(t)
y1(t) y2(t)

���� (2.13)

dose not vanish on [a, b]

� Example 2.11 Show that
�

x =−2e5t

y = e5t , and

�
x = 4e−t

y = e−t

is a solution to

x� = x−8y

y� = −x+3y

on (−∞, ∞). Find the general solution of this system and obtain the particular solution for
which

x(0) = 0, y(0) = 6 �

2.5.2 Non-homogeneous Linear System

Theorem 2.5.2 If the two solutions (2.11) of the homogeneous system (2.10) are linearly
independent on [a, b] and if

�
x = xp(t)
y = yp(t)

is any particular solution of the non-homogeneous system

dx
dt

= a11(t)x(t)+a12(t)y(t)+ f1(t) (2.14)

dy
dt

= a21(t)x(t)+a22(t)x(t)+ f2(t)

on [a, b] then �
x = c1x1(t)+ c2x2(t)+ xp(t)
y = c1y1(t)+ c2y2(t)+ yp(t)

is the general solution of (2.14) on [a, b]
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2.6 Operator method for Linear System with constant coefficients 37

2.6 Operator method for Linear System with constant coefficients
Consider the linear system of

dx
dt

= a11x(t)+a12y(t)+ f1(t)

dy
dt

= a21x(t)+a22x(t)+ f2(t)

This system can be written in the equivalent form

(D−a11)x − a12y = f1(t) (2.15)

−a21x + (D−a22)y = f2(t) (2.16)

where D is the differential operator
d
dt

. The idea behind the solution technique is that we can now
easily eliminate y between these two equations by operating on equation (2.15) with D−a22,
multiplying equation (2.16) by a12, and adding the resulting equations. This yields a second-
order constant coefficient linear differential equation for x only. Substituting the expression
thereby obtained for x into equation (2.15) will then yield y.

� Example 2.12 Solve the IVP

x� = x+2y

y� = 2x−2y, x(0) = 1, y(0) = 0

�

Solution: Rewriting the system in operator form as

(D−1)x − 2y = 0 (2.17)

−2x + (D+2)y = 0 (2.18)

To eliminate y between these two equations, we first operate on equation (2.17) with D+2 to
obtain

(D+2)(D−1)x−2(D+2)y = 0
Adding twice equation (2.18) to this equation eliminates y and yields

(D+2)(D−1)x−4x = 0 =⇒ (D2 +D−6)x = 0
This constant coefficient DE has auxiliary polynomial

m2+m−6 = 0 =⇒ (m+3)(m−2) = 0 =⇒ m =−3 or m = 2
Hence,

x = c1e−3t + c2e2t

We now determine y. From equation (2.17), we have

y =
1
2
(D−1)x =

1
2
(Dx− x)

=
1
2

�
d
dt
(c1e−3t + c2e2t)− (c1e−3t + c2e2t)

�

=
1
2
�
−4c1e−3t + c2e2t�

Hence, the solution to the given system of DE is




x = c1e−3t + c2e2t

y =
1
2
�
−4c1e−3t + c2e2t

�
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where c1 and c2 are arbitrary constants. Imposing the two initial conditions yields the following
equations for determining c1 and c2:

c1 + c2 = 1, −4c1 + c2 = 0 ⇒ c1 =
1
5
, c2 =

4
5

Hence, the particular solution is
�

x = 1
5

�
e−3t +4e2t

�

y = 2
5

�
e2t − e−3t

�

Exercise 2.5 Solve
a.

dx
dt

+4x+3y = t

dy
dt

+2x+5y = et

b.
dx
dt

= x+2y+ t −1

dy
dt

= 3x+2y−5t −2
c.

Dx−3y = 6asin t

3x+Dy = 0
subject to x(0) = a, y(0) = 0

�

2.7 Applications of Second-Order Differential Equations

2.7.1 Spring/Mass System
HOOKE’S LAW: states that the spring itself exerts a restoring force F opposite to the direction
of elongation and proportional to the amount of elongation s. i.e.,

F = ks

where k is a constant of proportionality called the spring constant.

Figure 2.1: Spring/mass system
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2.7 Applications of Second-Order Differential Equations 39

NEWTON’S SECOND LAW After a mass m is attached to a spring, it stretches the spring
by an amount s and attains a position of equilibrium at which its weight W = mg is balanced by
the restoring force ks. If the mass is displaced by an amount x from its equilibrium position, the
restoring force of the spring is then k(x+ s).
Assuming that there are no retarding forces acting on the system and assuming that the mass
vibrates free of other external forces ’free motion’ we can equate Newton’s second law with the
net, or resultant, force of the restoring force and the weight:

m
d2x
dt2 =−k(x+ s)+mg =−kx+mg− ks =−kx (2.19)

The negative sign in (2.19) indicates that the restoring force of the spring acts opposite to the
direction of motion. Furthermore, we adopt the convention that displacements measured below
the equilibrium position are positive. See Figure 2.2

Figure 2.2: Direction below the equilibrium position is positive.

Differential equation of free undamped motion : By dividing (2.19) by the mass m, we obtain
the second-order differential equation

d2x
dt2 +ω2x = 0 (2.20)

where ω2 =
k
m

. Equation (2.20) is said to describe simple harmonic motion or free undamped
motion. If the system starts at t = 0 with an initial position x0 and initial velocity x1, we have
initial condition’s x(0) = x0, and x�(0) = x1.
Thus, the general solution of (2.20) is

x(t) = c1 cosωt + c2 sinωt (2.21)

The natural frequency is f =
ω
2π

and the period of motion is T =
1
f
=

2π
ω

. The number

ω =

�
k
m

(measured in radians per second) is called the circular frequency of the system.

Equation (2.21) can be re-expressed as

x(t) = Acos(ωt −φ)

where A =
�

c2
1 + c2

2 is Amplitude and

φ = tan−1(c2/c1), is phase angle. Where sinφ =
c2

A
, cosφ =

c2

A
Differential equation of free damped motion: In the study of mechanics, damping forces
acting on a body are considered to be proportional to a power of the instantaneous velocity. In
particular, we shall assume throughout the subsequent discussion that this force is given by a
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constant multiple of
dx
dt

. When no other external forces are impressed on the system, it follows
from Newton’s second law that

m
d2x
dt2 =−kx−β

dx
dt

(2.22)

where β is a positive damping constant and the negative sign is a consequence of the fact that
the damping force acts in a direction opposite to the motion.
Dividing (2.22) by the mass m, we find that the differential equation of free damped motion is

d2x
dt2 +2λ

dx
dt

+ω2x = 0 (2.23)

where 2λ =
β
m
, ω2 =

k
m

.

Case I: If λ 2 −ω2 > 0. The system is said to be overdamped because the damping coefficient
β is large when compared to the spring constant k.
The corresponding solution of (2.23) is

x(t) = e−λ t
�

c1e
√

λ 2−ω2t + c2e−
√

λ 2−ω2t
�

This equation represents a smooth and nonoscillatory motion.
Case II: If λ 2−ω2 = 0. The system is said to be critically damped because any slight decrease
in the damping force would result in oscillatory motion. The general solution of (2.23) is

x(t) = e−λ t(c1 + c2t) (2.24)

The motion is quite similar to that of an overdamped system. It is also apparent from (2.24) that
the mass can pass through the equilibrium position at most one time.
Case III: If λ 2−ω2 < 0. The system is said to be underdamped, since the damping coefficient
is small in comparison to the spring constant. Thus the general solution of equation (2.23) is

x(t) = e−λ t(c1 cos
√

λ 2 −ω2t + c2 sin
√

λ 2 −ω2t)

The motion is oscillatory; but because of the coefficient e−λ t the amplitudes of vibration →
0 as t → ∞

� Example 2.13 A spring with a mass of 2 kg has natural length 0.5 m. A force of 25.6 N is
required to maintain it streched to a length of 0.7 m. If the spring is streched to a length of
0.7 m and then released with initial velocity 0, find the position of the mass at any time t. �

� Example 2.14 Suppose that the spring of Example 2.13 is immersed in a fluid with damping
constant β = 40. Find the position of the mass at any time t if it starts from the equilibrium
position and is given a push to start it with an initial velocity of 0.6 m/s. �

2.7.2 Electric Circuit
Consider the RLC Circuit below
Kirchhoff’s Law The algebric sum of the voltage drops in a simple closed circuit is zero. The

voltage drop across the resistor, capacitor and inductor are given RI,
1
c

q, and L
dI
dt

respactively.
Hence

RI +L
dI
dt

+
1
c

q = E(t) (2.25)
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Figure 2.3: LRC series circuit.

Since I =
dq
dt

⇒ dI
dt

=
d2q
dt2

⇒ d2q
dt2 +

R
L

dq
dt

+
1

cL
q =

E(t)
L

(2.26)

The initial conditions may be q(0) = q0,
dq
dt

|t=0 = I(0) = I0

To obtain a differential equation for current differentiating equ (2.25) with repect to time t,

R
dI
dt

+L
d2I
dt2 +

1
c

dq
dt

=
dE(t)

dt

Since
dq
dt

= I

⇒ d2I
dt2 +

R
L

dI
dt

+
1

cL
I =

E(t)
dt

(2.27)

The initial conditions may be I(0) = I0, and
dI
dt

|t=0 =
1
L

.

If E(t) = 0, the electrical vibrations of the circuit are said to be free.
We say that the circuit is

overdamped if R2 − 4L
C

> 0

critically damped if R2 − 4L
C

= 0

underdamped if R2 − 4L
C

< 0

� Example 2.15 Find the charge q(t) on the capacitor in an LRC series circuit when L =
0.25 H , R = 10ohms , C = 0.001 farad , E(t) = 0, q(0) = q0 coulombs, and I(0) = 0. �
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